
Exercising a Native Intelligence Metric on an Autonomous On-Road Driving
System

John A. Horst
National Institute of Standards and Technology (NIST)

100 Bureau Drive MS 8230
Gaithersburg, Maryland, 20899-8230 USA

Telephone: (301) 975-3430
Email: john.horst@nist.gov

Abstract— The intelligence of artificial systems is well quanti-
fied by the amount of specified complexity inherent in the repre-
sentation, provided we have tools to measure it. Some may gen-
erally agree with this claim, but argue that it is simply intractable
to successfully and accurately measure the specified complexity
of any system, no matter how it was represented. We respond
to this important and substantive criticism by performing a com-
putation required by the NIM on an example problem. We have
chosen autonomous on-road driving, a problem that has already
been solved by "systems" that are known to be both complex and
specified, namely, humans. We will begin with a concise state-
ment of the scope of the problem and a summary description of
an appropriate system representation approach. We then apply
a previously published Native Intelligence Metric (NIM) to mea-
sure the specification inherent in that representation and perform
some preliminary intelligence measurements for a particular au-
tonomous on-road driving subsystem. We claim that with an ap-
propriate intelligence metric and an appropriate system represen-
tation, we can establish an equivalency between 1) the "state of
the world" conditions, forming the input to the system, that the
system can respond to successfully, 2) the system representation,
and 3) the system performance. This equivalency is a potentially
powerful result and is a key benefit and uniqueness of the theory
proposed in this paper.

I. Introduction

What constitutes a "good" system is a highly practi-
cal question. Answering it is at the heart of a produc-
tive economy. A substantial industry has arisen which
exists solely to develop and apply metrics to common
consumer products. In this light, measuring the "in-
telligence" of a system should largely be an attempt to
formalize and extend this already common procedure.
To extend system "goodness" metrics to system "intel-
ligence" metrics will surely consist of metrics that also
measure system adaptability, system learning, and sys-
tem performance potential.

However, it is also well known that "simple" in-
stinctual (i.e., "hard-coded") behavior in living organ-
isms possesses an elegance, efficiency, complexity, and
adaptability that is far beyond the successes of today’s
artificial systems. Even instinctual system behavior is
not well understood, since we cannot yet come near to
reproducing it in artificial systems.

Furthermore, the formalization of almost anything
in science starts with the simplest representations and
moves to the more complex. This is our approach to

intelligence metrics. Since instinctual systems can dis-
play remarkably complex and useful behavior, a formal
intelligence metric should start with a representation
that is one of the most analyzable. This is why we
have chosen finite state machines as our representation
method.

We also notice that current system intelligence met-
rics research is typically seeking to analyze system per-
formance alone – regarding the system itself as a black
box. The intelligence metric we propose is dependent
upon, but not solely tied to system performance. Our
goal is to develop a formal intelligence metric that is
"native" or "innate" to the system. This means we can
apply this metric to the system representation itself as
well as to the system output.

Our approach seeks to be formal, seeks to measure
native intelligence, and starts with an analysis of a rep-
resentation particularly appropriate for instinctual sys-
tem behavior. What might we gain from this approach?
We claim that with an appropriate intelligence met-
ric and an appropriate system representation, we can
establish an equivalency between 1) the world condi-
tions input to the system that the system can recognize,
2) the system representation, and 3) the system per-
formance. This equivalency is a powerful result and is
the key benefit and unique advantage of the theory pro-
posed in this paper. This means that we can determine
system performance if we possess either the recognized
inputs or the system representation. Intelligence can
potentially be measured without system realization! In
the same way that system simulation allows engineers
to efficiently and safely develop systems prior to costly
physical realization, such an intelligence metric can of-
fer similar advantages.

This intelligence metric that we have been alluding
to has already been introduced in [1]. The actual con-
tent of the system code is measured by this metric. The
metric is not independent of system performance, be-
cause the metric needs to know that the system con-
tains the potential for demonstrably successful perfor-
mance. However, the metric can be applied merely to a
binary representation of the system design, as long as
we can guarantee successful performance by the design

components.
In this paper, we present a system representation that

is conducive to the application of the Native Intelligence
Metric (NIM). Key to the success of such an application
is that the system representation submit to formal anal-
ysis. Modularity and separability of behaviors are im-
portant as well.

II. The Native Intelligence Metric (NIM)

We define native intelligence as the specified com-
plexity inherent in the information content of a system.
This is reasonable since any artificial system can be ex-
pressed as a finite set of instructions encoded in some
general purpose language together with a completely
and independently known specification. By specifi-
cation we mean some known connection to patterns,
where patterns are things like specific instances of syn-
tax, semantics, and useful functionality. For electro-
mechanical systems, specification is, most importantly,
useful functionality.

The NIM employs a chance elimination argument [2]
to form a promising native intelligence metric for en-
coded systems. It consists of the following steps:
1) identify description of the intelligent system E of
interest in some standard (analyzable) representation
2) identify the pattern D, which fully identifies the
"specification" of the intelligent system; for an electro-
mechanical system, "specification" is largely "useful
functioning", 3) gather all the relevant "side informa-
tion" I, which verifies that the pattern D is not "read off
of" E, but is independent of E; I is also a complete de-
scription of the resources and information necessary to
form the pattern D, 4) identify the system description
D∗ effecting D that delimits E, meaning that E "con-
tains" D∗ and that D∗ is the portion of E that matches
the patternD, 5) define a chance hypothesis,H, that ad-
equately describes the formation of D∗ by random pro-
cesses alone, 6) compute the probability, P(D∗|H), that
D∗ might occur according to H 7) compute the com-
plexity, φ(D|I), of generating the pattern, D, from I,
8) compute − log2 P(D∗|H).

Both − log2 P(D∗|H) and φ(D|I) form the NIM. The
former indicates how much the system deviates from
the chance hypothesis particularly, but from chance
processes in general. This alone though is not sufficient
to provide a measure of intelligence, for many highly
unlikely events occur all the time, but D∗ ensures that
only the portion of E that effects useful functioning is
conditioned by H. φ(D|I) is a measure of the com-
plexity of of generating the useful functioning given
I. We retain this portion of the metric in order to al-
low that an intelligent system may be extraordinarily
difficult to construct, but perhaps showing a relatively
smaller amount of useful functioning.

E is simply the representation for the particular sys-
tem we wish to analyze. The system design needs to
be in an analyzable format. A system expressed as a
finite state machine (FSM) is such a format. How do
we identify I and D? The relevant system specification
will be captured in the pattern, D, and the side informa-
tion, I. The gathering and identification of I and D is a
challenging task for reasonably complex systems. The
challenge lies mostly in quantifying useful functional-
ity. We can easily underestimate the intelligence in the
system if we miss or overlook key information. This
constitutes a false negative, which will be very common.
However, because complex specified information is typ-
ically highly differentiated from other complex speci-
fied information, false positives will be highly unlikely.
System designers will want to ensure that the systems
they design achieve the maximum (intelligence) value
under the NIM. This is called "design for analysis" and
is common now for system analysis via various perfor-
mance metrics, particularly with consumer products.

III. RCS system representation approach

Our system representation consists of multiple, si-
multaneously executing FSMs, organized in the form
of a tree. Each of these FSMs has modules relating to
four functions: behavior generation (BG), value judg-
ment (VJ), world modelling (WM), and sensory process-
ing (SP). The approach is both an architecture and a de-
sign methodology (alternatively called RCS or 4D/RCS
[3]). RCS offers a precise description of the structure
and contents of the system (the architecture) as well as
the sequential steps a system designer must perform
to create a design (the methodology). Figure 1 is an
example of an RCS architecture. RCS has already been
tested successfully on a wide variety of large-scale con-
trol systems. The value of RCS lies in great measure
in task and design complexity management and broad
applicability.

The FSMs are simultaneously executing, which means
the entire system has memory for multiple states. Fur-
thermore, the FSMs form primarily a framework for
computing, which allows for general purpose code to
be used as state transition functions. Therefore, the
system as a whole is a general-purpose computing ma-
chine.

In RCS, FSMs are the predominant vehicle for ex-
pressing system behavior. The RCS methodology is ac-
companied by design rules. The methodology is task-
oriented in the sense that the natural characteristics
of the task to be performed are what inform and dic-
tate the structure and content of the system design.
The tasks are expressed in the form of FSMs, arguing
that any if...then...else structure in the behavior
should be encoded as an FSM to gain overall system

Follow_GoalPath

Follow_Lane
ChangeTo_LeftLane

ChangeTo_RightLane
TurnRight_ToLane

TurnLeft_ToLane
GotoGap_LeftLane

GotoGap_RightLane

Follow_Road
CrossThru_Intersection
GoLeftTo___
GoRightTo___
Make_U_Turn
RespondToOwnVehEmergency

Goto_Destination
 (Road,Address)

Destination
Manager

Do_Journey

Plans the sequence of major destination goals
such as Goto PostOffice, Bank, GasStation,
GroceryStore,etc.

RouteSegment
Manager

Plans the Sequence of Route Segments to get
to command Destination Goal. Output looks
like common Internet-available list of driving
directions.

DriveBehavior
Manager

Develops low-level behaviors for negotiating
intersections and deciding when to change lanes while
traveling down a commanded road segment. Looks for
objects that might intersect path that can be avoided by
a lane change maneuver .

Carries out real-time maneuvers like
circumvent, straddle, pass, slow down, speed
up, to deal with other vehicles, objects and
traffic control.

GoalPath
Trajectory
Generator

Calculates the LaneSegmentPath
DynamicTrajectory as a goal path to carry out
commanded move while controlling for skid and
immediate obstacle response.

Elemental
Maneuver
Manager

Journey
Manager

GoOnRd___ TurnLeftOntoRd___
GoOnRd___ TurnRightOntoRd___

FollowVehicle
GoOnRd___StopAt___

PassOn_Left
PassOn_Right
PullOnto_LeftShoulder
PullOnto_RightShoulder
PullOntoRdFrom_LeftShoulder
PullOntoRdFrom_RightShoulder
StopAtIntersection

Decides on real-time goal lanes for road segments
and for negotiating intersections.
Deals with intersections, forks, and merges.
Looks for objects that might intersect path.

RespondToSevereCond
RespondToDisruptiveCond

RespondToImminentCollision
AccomodateSchoolBus

AccomodateEmerVehicle

GoOnRd___TurnLeftIntoDrive
GoOnRd___TurnRightIntoDrive
GoOnRd___BecomesRd___

Fig. 1. RCS Control Nodes in the On-Road Hierarchy with Commands and Node "Job Descriptions"

clarity.
We now focus on the design method of RCS. It can be

summarized as a design procedure and a set of design
rules.

A. The FSM-based design procedure

1. Identify the highest level task associated with the
application.

2. Precisely define the scope of the task including
the identification of available resources, e.g. sen-
sor, actuator, computing, and communication sub-
systems.

3. Break down higher level tasks into naturally con-
stituent sub-tasks employing the design rules of
Section III-B.

4. Perform this breakdown of tasks all the way down
the hierarchy to the simplest and lowest level tasks.

5. For each task so generated, create an FSM, iden-
tifying all system and environment conditions (or
decisions), functions, and data necessary for state
transition. Each FSM formally expresses the syn-
chronization and coordination of tasks for lower
level FSMs.

6. Identify and select or create the necessary SP and
WM primitive data and aggregate data needed to
make the VJ decisions required for each node’s
state transitions.

7. Identify SP and WM data that needs to be shared
inter-nodally.

8. Map nodes to processing habitats, i.e., processes
on specific processors, based on processing re-
quirements.

9. Identify communication links between processors
and set up communications.

B. Design rules

1. Separately defined tasks must be unique in the
sense that they should have a substantial degree of
behavioral dissimilarity in order to reduce redun-
dancy and processing overhead.

2. The hierarchical decomposition of tasks should be
designed based on the natural modular boundaries
of each particular task and the unique nature of its
environment.

3. Tasks and their FSMs should be defined in order to
achieve an optimal number of states per task, since
too few states increase system overhead and too
many decrease system perspicuity, albeit the for-
mer is less important to adhere to than the latter,
as long as good software design tools are available
to handle overhead.

4. Tasks should be grouped into the same hierar-
chical level based on similar temporal and spatial
scope of responsibility, with the caveat that what

is actually performed by those tasks can be greatly
dissimilar.

5. Nodes should be formed through the grouping of
same-hierarchical-level tasks. Grouping of tasks
into nodes is based on two rules.

(a) The tasks should be behaviorally similar and
support a definable "job description".

(b) Tasks sharing the same sub-task must be
grouped into the same node.

6. Tasks grouped into the same node must be mu-
tually exclusive in time, i.e., two such tasks should
not be able to be performed at the same instant
of time; since tasks are realized as FSMs, this im-
plies that each node is effectively a single FSM and
therefore the entire system consists of multiple, si-
multaneously executing FSMs.

7. Employ non-mutually exclusive characteristics,
such as global system conditions or certain envi-
ronmental conditions, only to modify the FSM logic
of mutually exclusive tasks and/or modify WM pa-
rameters within state transition functions in the
FSMs of mutually exclusive tasks. This avoids com-
binatorial task explosion when non-mutually exclu-
sive entities can easily be used to form a forbidding
number of tasks.

8. Two (or more) parent controllers cannot command
the same child controller at the same instant of
time, implying that two parent tasks can be directly
related to a single sub-task only if the two parent
tasks are grouped into the same controller.

9. Tasks and sub-tasks should be defined to maxi-
mize reuse of sub-tasks.

10. Ensure that lower level tasks are grouped into a
higher level tasks based on shared similarities of
key task attributes.

11. Reveal or make explicit as FSMs all if..then..else
activities in the system.

IV. The on-road driving application

The NIM can be applied to the on-road driving con-
trol application coupled with the RCS method of sys-
tem representation. We will parameterize the scope
of the problem and then conclude this section with an
overview of how the NIM would be applied to a complex
subsystem within this application.

A. Application scope

The vehicle is expected to be a common automobile,
with minimal changes to allow for autonomous control,
sufficient sensing, and on-board computing, i.e., no ra-
dio link needed. No human interaction is expected at
any point, i.e., complete autonomy is in view. Sensing
will include auditory sensors, various types of cameras
at various locations on the vehicle, including active (e.g.,

LADAR) and passive (e.g., CCD) sensors, olfactory and
touch sensors. All the computing required to achieve,
goal-achieving control will be located on-board the ve-
hicle. However, no adjustment of the external world
will be assumed. Therefore, sign reading and compre-
hension, traffic light detection and comprehension, and
two-way communication with humans, including the
comprehension of signs and spoken natural language
and some minimal natural speech output is required.

B. On-road driving and the NIM

We now proceed through all the steps of the NIM
and describe roughly how subsystem intelligence can
be measured by it. For simplicity, consider a single-
obstacle maneuver subsystem, namely, a subsystem
that has the ability to maneuver in-lane around a sin-
gle slower-moving object. In Figure 1, the subsystem in
view is the "elemental maneuver manager."

1) E is the description of the elemental maneuver
manager subsystem in terms of BG FSMs, VJ decisions,
and WM primitives and their aggregates. 2) Six possi-
ble vehicle in-lane maneuvers emerge, namely, circum-
vent object left, circumvent object right, run over ob-
ject, straddle object, make contact with the object, and
slow to follow object. D is the set of all these maneuver
patterns for all possible types, sizes, dynamics of ob-
ject. All patterns and object types fall into manageable
finite sets. 3) Side information I is simply the set of driv-
ing rules that precisely describe the maneuver patterns
D and the appropriate world states that trigger such
patterns, and that such rules exist independently of D.
If such a connection between I and D can be made, and
D is of sufficient complexity, we can be assured that
the maneuver patterns D are not due to a chance hy-
pothesis. 4) D∗ will be the portion of the subsystem
design E that effects all the correct outcome maneuver
patterns D, namely, those maneuvers that are appro-
priate for all possible world states. 5) The chance hy-
pothesis H will simply be the proposal that all the ap-
propriate maneuvers, D, generated by the subsystem
D∗ occurred by chance. 6) The probability P(D∗|H) is
the probability that the maneuver patterns D that are
appropriate for each world state generated by the sub-
system D∗ occurred by chance. 7) Compute the actual
complexityφ(D|I) of generating the maneuver patterns
D given that designers know that rules of the road ex-
ist independently of the particular system. 8) Compute
− log2 P(D∗|H).

In summary, the more the subsystem D∗ is able to
generate maneuver patterns that exhibit efficient and
safe behavior (such behavior as is detailed in drivers
manuals and minds of good drivers) the lower will be
the probability that such a maneuver subsystem D∗
could have occurred unintelligently, or to put it posi-

tively, the higher the level of intelligence contained in
the system. A key in this reasoning is that for E to be
intelligent, I must be detachable. For maneuvering, it
means that the concept of safe and efficient maneuver-
ing existed before and, more importantly, independent
of the design of system E. Negatively, this means that
if safe and efficient maneuvering were defined based on
the system we happened to build (i.e., D dependent on
E alone), we would not be able to claim that E was de-
signed based on intelligence and would be justified to
claim that E was either incorrectly or haphazardly (or
both) designed.

A key item then is to measure the amount of proper
or appropriate maneuvering behavior for a wide vari-
ety of input conditions, namely, road conditions (hills,
curves, surface), weather conditions (precipitation, vis-
ibility), obstacles and debris, and other traffic. This
is difficult to quantify, but such quantifiable tests are
constantly being performed on humans in driver’s ed-
ucation courses. It is required that any system that is
considered intelligent must have this quantifiable con-
nection with a detachable pattern in the real world. For
electro-mechanical systems this implies something like
useful, purposeful, safe, and/or efficient functioning.
Just how this quantity is measured is dealt with in the
following section.

V. Computing − log2 P(D∗|H) using the vehicle

maneuvering example

The probability that the portion of the system respon-
sible for the system E’s useful functioning is due to
a chance hypothesis is P(D∗|H). If we were to com-
pute this probability for a purely random hypothesis,
we would easily obtain a vanishingly small number for
any reasonably useful system; somewhat like the proba-
bility that a monkey with a computer and keyboard can
type out Hamlet (Hamlet, in this example, is the sys-
tem). We will still obtain very small numbers even for
only partially random chance hypotheses, as we shall
see.

Partially random chance hypotheses will not be use-
ful for obtaining the absolute intelligence of the system,
but since most measures of intelligence are eventually
meant for comparison only, partially random chance
hypotheses (relative chance hypotheses) will serve well.
Besides, we suspect they will be substantially easier to
compute.

Let’s return to the problem of maneuvering in lane in
the presence of an object1 also in lane. We choose a
relative chance hypothesis H with the following char-
acteristics. When faced with an object in lane moving
slower than the vehicle’s desired speed, the vehicle will

1The object can be stationary or in motion; it can be a vehicle,
pedestrian, or a rock.

uniformly randomly select one of the six possible ma-
neuvers, namely, 1:circumvent around object left, 2:cir-
cumvent around object right, 3:run over object, 4:strad-
dle object, 5:slow to follow object , and 6:stop on road
shoulder. This is equivalent to a driver that, when faced
with an object in his lane of a certain size, position, and
velocity, rolls a single (fair) six-sided die and selects the
behavior from the six possible behaviors based on the
outcome of the roll of the die.

What is the probability, for a particular system, that
the actual (or potential) behavior of the system occurred
by this particular chance hypothesis? Assume for the
sake of realism, the subsystem E1 is currently unable to
run over any object. Let’s say E1 cannot detect the type
of object and therefore has no idea of the relative cost of
that object, so E1 will never run over an object, even if it
is just a paper bag. Let’s compare this with a subsystem
E2 that can perform all six maneuvers. Again to simplify
matters, assume that, when there is a choice of several
maneuvers, subsystem two just randomly chooses be-
tween the options. So does subsystem one, except that
it never performs "run over object".

All possible 26 − 1 = 63 combinations of allowable
behavior for possible input conditions (input condi-
tions are the various possible types, positions, and sizes
of the object) need to be considered, where the num-
ber of one-, two-, three-, four-, five-, and six-maneuver
conditions are 6, 15, 20, 15, 6, and 1, respectively
(6 + 15 + 20 + 15 + 6 + 1 = 63). For example, three-
maneuver condition sets are sets like {1,2,3}, {2,3,4},
{1,3,4}, etc. Since all possible conditions (events) are in-
dependent identically distributed (iid), individual prob-
abilities multiply to compute the total probability for
the jth subsystem (j = 1,2), P(D∗1 |H) =

∏6
i=1 P(D

∗
ji|H)

for the ith-maneuver condition set.

The NIM requires that we compute the probability
only for those portions of the subsystem that match
with pattern, which for our subsystem means those
portions that fail to match with pattern in some way
are not part of the probability computation. Intuitively,
this means that intelligence is both a function of what
is both "correct" in the subsystem and what is not at-
tributable to chance.

The world condition "able to run over object" will
never cause subsystem one to actually run over the ob-
ject, since it does not have that capability. So this world
condition is not part of D∗1 . Therefore, the total prob-
ability for the 6 one-maneuver conditions for subsys-
tem one will be (1/6)5. On the other hand, subsys-
tem two has the capability of detecting object type and
so can run over the object if appropriate. This is pat-
tern matching behavior and so is part of D∗2 and must
be part of our probability calculation. So P("run over
object"|H) = 1/6 for subsystem two. Therefore, the to-

tal probability for the 6 one-maneuver conditions for
subsystem two will be (1/6)6.

Continuing in this manner for all the other world con-
ditions, for subsystem one, we exclude from the compu-
tation of total probability all the world conditions that
do not have the match with pattern, namely, conditions
that include "able to run over object". So when two ma-
neuvers are possible (i.e. two-maneuver input condi-
tions), 5 of the 15 sets of two-maneuver possibilities
will contain the maneuver "run over object". Therefore,
the total probability for the the two-maneuver condi-
tions for subsystem one will be (1/3)10 and for sub-
system two will be (1/3)15. Similarly, total probabili-
ties for systems one and two for the 20 three-maneuver
conditions are (1/2)10 and (1/2)20. Total probabilities
for systems one and two for the 15 four-maneuver con-
ditions are (2/3)5 and (2/3)15. Total probabilities for
systems one and two for the 6 five-maneuver conditions
are 5/6 and (5/6)6. The total probability for subsystem
two for the 1 six-maneuver condition is 1.

This gives the total probability for subsystem one as
(5/6)×(2/3)5×(1/2)10×(1/3)10×(1/6)5×1 = 2.334×
10−13 and (5/6)6× (2/3)15× (1/2)20× (1/3)15× (1/6)6
= 1.089 × 10−21 for subsystem two. Finally, the NIM
applied to subsystem one, − log2 P(D∗1 |H), = 41.962
the NIM applied to subsystem two, − log2 P(D∗2 |H),
= 69.637. Our intuition about the additional intelli-
gence of subsystem two is obviously satisfied. However,
it may seem that the amount of the difference is unjusti-
fied. Perhaps we ought not exclude, from all probability
calculations, all world conditions involving "able to run
over object" for subsystem one.

VI. Autonomous on-road driving realization via

RCS

We will now show how the system representation
method (described in Section III) is being applied to the
on-road driving control problem.

A. Hierarchy: nodes and job descriptions

In the design rules, summarized in Section III-B, we
stated that the hierarchical decomposition of tasks
should be performed based on the natural modular
boundaries of each particular task and the unique na-
ture of its environment. In this and other large-scale
control problems, we find it remarkable how modular
boundaries seem to arise so naturally as one ponders
carefully the precise nature of the task and its environ-
ment. In several large-scale control tasks, namely, au-
tomated coal mining, dimensional inspection machine
automation, and now autonomous on-road driving, this
experience has been consistent [4].

For on-road driving, the task modularities have also
been remarkably manifest. Referring to Figure 1, we see

that the highest level node, called Journey Manager (JM),
handles trips from a home base to a home base. For
example, our vehicle may need to stop at several des-
tinations throughout our journey; we may go to work,
stop at the store, visit a friend in the hospital, and re-
turn home. Decisions such as the ordering of the des-
tinations are decided by JM. For example the store may
close at 6PM, so if we are working late, we may need
to visit the store before the hospital. The next level,
called Destination Manager (DM), handles each destina-
tion. For example, going to the hospital may require us
to follow route 97 north for 3 kilometers, go west on
interstate 70 for 2 kilometers, go north on route 94 for
3.4 kilometers, and turn left onto Hospital Drive. DM is
responsible for creating the kind of path plan which is
currently available from certain internet sites, in which
the plan may be adjusted based on criteria such as dis-
tance, time, or the route’s scenic beauty. The Route
Segment Manager (RSM) handles these route segments.
Going north on route 97 might involve several inter-
sections with traffic and obstacles in the road along the
way. The RSM will process tasks that involve going from
intersection to intersection. The next level, the Drive Be-
havior Manager (DBM), will handle driving behavior op-
erations like passing and handling school busses and
intersections. The next level, the Elemental Maneuver
Manager (EMM), handles all in-lane maneuvers such as,
circumvent object left, circumvent object right, run over
object, straddle object, make contact with the object,
and slow to follow object as described in Section IV-B.
The subsequent levels handle trajectory generation and
the parsing of global trajectories into the local trajecto-
ries and commands to a variety of servo level nodes
including braking, steering, transmission, and throttle.

Each one of these nodes is an FSM. Actually it is
an FSM framework, since general purpose computing
(FSMs are not general purpose computing engines) can
also occur within the node. However, the majority of
behaviors occur in FSMs. The simplicity of FSMs gives
potential gains in system and task perspicuity as well
as the possibility of the formal analysis that FSMs allow.
The currently executing task within each node forms a
command to one of the subordinate nodes.

Hierarchical task decomposition modularizes task
behavior, which greatly facilitates application of the
NIM, as we will discuss in Section VII-A.

B. Behavior Generation FSMs (plans)

The heart of each node are the plans (FSMs) which re-
alize the decision logic for each task within the node.
In Figure 1 it can be seen that tasks to a subordinate
node are sent as commands. A command received by
a subordinate triggers the selection of a particular FSM
from a set of preexisting FSMs. Such an FSM is shown

at the top of the Behavior Generation column of Fig-
ure 2. In this example, a followLane command has
been sent from the DBM node (the supervisory node)
and received by the EMM node (subordinate). Based
on conditions in the environment, different FSMs are
spawned. For example, if the vehicle needs to manuever
around two objects, both of which can be circumvented
in lane but not straddled, an FSM called circANDnoS-
traddle1_circANDnoStraddle2, shown at the bottom of
the Behavior Generation column of Figure 2, is realized.

One can see as well how these behavior generation
FSMs fit into the context of the VJ decisions and the
supporting WM primitives in Figure 2. We will discuss
VJ and WM activity now.

C. Value judgment decision tree as transition conditions
for behavior generation FSMs

The conditions of the environment that cause transi-
tions in the behavior FSMs are generated in the Value
Judgment (VJ) section of the node. These are the "con-
ditions" on the left column in the state tables shown in
the Behavior Generation column of Figure 2. The con-
ditions that trigger specific behaviors depend in turn
on lower level conditions that are also generated in VJ.
The Value Judgment column of Figure 2 presents an ex-
ample, for the followLane command in the EMM node,
of the dependency of VJ conditions on lower level con-
ditions. For in-lane maneuvering operations, vehicle
dynamics, affecting weather conditions, road surface
types, road characteristics, and in-lane obstacle con-
ditions form some of the categories of conditions re-
quired for vehicle maneuvering behavior.

D. World model aggregation tree supporting value judg-
ment decisions

The representation of the followLane command given
in Figure 2 only reveals the contribution of primitive
WM values. Actually aggregates of these world model
values are used for (generally) higher level value judg-
ment decisions. What is most important to point out
is that this representation identifies exactly what world
model primitives are needed to perform all the com-
plex tasks described in Section VI-B. We will show later
that with an FSM-based system, we can claim a formal
equivalence between input streams of WM primitives,
the particular FSMs employed, and the output system
behavior. All this is connected to intelligence, because
output behavior (performance) is connected to the in-
put streams of WM primitives that the system "recog-
nizes."

number of
object(s)
predicted

to obstruct lane
AND objects

predicted to be
too slow AND

objects
that are to

be encountered
soon enough

object going
too slowly

unsafe
to run over

object

unsafe
to go around

 object

OV close
enough to

object

object
circumventable

in lane

object
going too

slowly

unsafe
to run over

object

safe
to straddle

object

object(s)
circum-
ventible

able to
straddle
object(s)
in lane,

desired speed
object

forward speed

OV tire width

parameters for lane
segment of predicted

position of object
lane width near

object predicted position

OV body width

adjacent lane object
dynamic state

adjacent lane object width

OV dynamic state

OV dynamic state

OV dynamic state

object size (length,
width, and orientation)
object dynamic state

object height
object width

OV inner tire width
object dynamic state

object dynamic state

lane width
object type

uncertainty level of
object state

OV close
enough to

object

OV dynamic state
object dynamic state

minimum desired
speed
object

forward speed
OV forward speed

own vehicle (OV) tire width
lane width

OV body width

adjacent lane object
dynamic state

adjacent lane object width

object width
object size

object dynamic state

object height
object width

OV inner tire width
object dynamic state

lane width
object type

uncertainty level of
object state

object height
object width

OV inner tire width
object dynamic state

lane width
object type

uncertainty level of
object state

OV close
enough to

object

OV dynamic state

object dynamic state

need to
adjust
speed

object height
object width

OV dynamic state
object dynamic state

OV inner tire width
object dynamic state

lane width
object type

uncertainty level of
object state

need to
adjust

speed due to
object type

and/or tightness
of path

object height
object width

OV dynamic state
object dynamic state

OV inner tire width
object dynamic state

lane width
object type

uncertainty level of
object state

object type

unsafe
to straddle

object

object height
object width

OV inner tire width
object dynamic state

lane width
object type

uncertainty level of
object state

road surface
type

conditions
around the road

weather-related
visibility-affecting

conditions

time-of-day-related
visibility-affecting

conditions

wind
conditions

 road
characteristics

warning
message

 motion-
affecting

conditions

 OV motion
dynamics
parameter
maximums

change in
conditions

World Model:
data primitives

Value Judgement:
conditions, events, and decisions

Behavior Generation:
motion inducing plans

object 1 is
circumventible
not straddlable

object 1 is
straddlable

not circumventible

object 1 is
not circumventible
and not straddlable

object 1 is
circumventible
and straddlable

object 2 is
circumventible
not straddlable

object 2 is
straddlable

not circumventible

object 2 is
not circumventible
and not straddlable

object 2 is
circumventible
and straddlable

exactly
two objects
of attention

in the active
object list

no objects
of attention

in the active
object list
only one

object
of attention

in the active
object list

weather-related
road surface
conditions

pl_c1¬s1c2¬s2:
Description: Vehicle can either straddle OR circumvent object 1 AND can circumvent

but cannot straddle object 2 (Note: object 1 is the object OV is expected to encounter 1st)
Conditions Actions

New plan S1: Checking relative forward speeds of
objects 1 and 2

S1 AND object 1 is faster than object 2 in
forward direction

S2: checking gaps and acceleration/time
costs

S1 AND object 2 is faster than object 1 in
forward direction

S3: checking gaps and acceleration/time
costs

S2 AND insufficient gap to circumvent 1,
circumvent 2

S4: plan goal path for OV slow down

S4 AND sufficient gap to circumvent 2,
circumvent 1

S5: compute goal paths and parameters for
circumvent 2 then circumvent 1

S3 AND insufficient gap to circumvent 1,
circumvent 2

S6: plan goal path for OV slow down

(S2 OR S3 OR S6) AND sufficient gap to
circumvent 1, circumvent 2

S7: compute goal paths and parameters for
circumvent 1 then circumvent 2

(S5 OR S7) AND only one goal path S8: execute goal path
(S5 OR S7) AND two separate goal paths S9: execute first goal path
S9 AND first goal path done S10: execute second goal path

followLane FSM
Conditions Actions

changeInConditions pl_changeInCon
ditions

noObjects pl_noObjects
(Can circumvent OR straddle object 1) AND
exactly one object

pl_ c1s1

(Can circumvent but cannot straddle object 1)
AND exactly one object

pl_c1¬s1

(Cannot circumvent but can straddle object 1)
AND exactly one object

pl_¬c1s1

(Cannot circumvent OR straddle object 1) AND
exactly one object

pl_¬c1¬s1

(Can circumvent OR straddle object 1) AND
(Cannot circumvent OR straddle object 2) AND
exactly two objects

pl_c1s1¬c2¬s2

(Can circumvent OR straddle object 1) AND
(Cannot circumvent but can straddle object 2)
AND exactly two objects

pl_c1s1¬c2s2

(Can circumvent OR straddle object 1) AND
(Can circumvent but cannot straddle object 2)
AND exactly two objects

pl_c1s1c2¬s2

(Can circumvent OR straddle object 1) AND
(Can circumvent OR straddle object 2) AND
exactly two objects

pl_c1s1c2s2

(Can circumvent but cannot straddle object 1)
AND (Cannot circumvent OR straddle object 2)
AND exactly two objects

pl_c1¬s1¬c2¬
s2

(Can circumvent but cannot straddle object 1)
AND (Cannot circumvent but can straddle
object 2) AND exactly two objects

pl_c1¬s1¬c2s2

(Can circumvent but cannot straddle object 1)
AND (Can circumvent but cannot straddle
object 2) AND exactly two objects

pl_c1¬s1c2¬s2

(Can circumvent but cannot straddle object 1)
AND (Can circumvent OR straddle object 2)
AND exactly two objects

pl_c1¬s1c2s2

(Cannot circumvent but can straddle object 1)
AND (Cannot circumvent OR straddle object 2)
AND exactly two objects

pl_¬c1s1¬c2¬
s2

(Cannot circumvent but can straddle object 1)
AND (Cannot circumvent but can straddle
object 2) AND exactly two objects

pl_¬c1s1¬c2s2

(Cannot circumvent but can straddle object 1)
AND (Can circumvent but cannot straddle
object 2) AND exactly two objects

pl_¬c1s1c2¬s2

(Cannot circumvent but can straddle object 1)
AND (Can circumvent OR straddle object 2)
AND exactly two objects

pl_¬c1s1c2s2

(Cannot circumvent OR straddle object 1) AND
(Cannot circumvent OR straddle object 2)

pl_¬c1¬s1

(Cannot circumvent OR straddle object 1) AND
(Cannot circumvent but can straddle object 2)

pl_¬c1¬s1¬c2
s2

(Cannot circumvent OR straddle object 1) AND
(Can circumvent but cannot straddle object 2)

pl_¬c1¬s1c2¬
s2

(Cannot circumvent OR straddle object 1) AND
(Can circumvent OR straddle object 2)

pl_¬c1¬s1c2s2

Fig. 2. Value Judgment decisions, World Model primitives, and behavior generation FSMs for followLane command. Arrows reveal the path
from high level conditions to the followLane FSM to the pl_c1¬s1c2¬s2 FSM, where pl_c1¬s1c2¬s2 means "vehicle can circumvent both
objects in lane, but cannot straddle either"

VII. Suitability of the RCS approach for NIM

A. Role of hierarchy

A hierarchy is helpful to the NIM for a couple of rea-
sons. It enables the separability of behavior descrip-
tions even though those behaviors operate in an inte-
grated system. Separability is helpful also for reuse
of components, but, more importantly for this work,
allows independent measurement of component intel-
ligence. Furthermore, a hierarchy is helpful to man-
age the combinatorics that naturally arise in state-based
systems. This is important for the NIM, since it will al-
low one to simplify the computation of− log2 P(D∗|H).

B. Role of behavior generation FSMs

Behavior as finite state machines exposes explicit and
detailed states. The key is the separability where the
addition of further behavior does not disturb other be-
haviors. The behaviors are largely uncorrelated, so that
adding additional behaviors to the system does not sub-
stantively disturb the existing system. We suspect that
this will have a similar benefit in the computation of the
NIM, but such a question yet to be investigated.

C. Equivalence between input words and finite state au-
tomata

The "words" in our representation are the world
model primitives that form the inputs to our system,
and which come from the perception subsystem. The
input words precisely match the system represented
as an FSM. Finite state automata (FSA) theory reveals
this to be so for the following reasons. FSMs in FSA
theory are expressed as "decision problems" with two
types of states, accept states and reject states [5]. An
input string is either accepted or rejected if, at the
end of processing the input string, the FSM is either
in an accept state or a reject state, respectively. We
say that A is the language of the machine, M , and write
L(M) = A, where words, w, are in A. Furthermore,
it can be shown that any FSM can be transformed into
this simple accept/reject model, since decision prob-
lems can be transformed into computational problems
in polynomial time [6]. Therefore, any FSM can be equiv-
alently expressed as the set of input words it accepts.

This result implies that the set of WM state vectors of
the intelligent system (the input words to the system)
that the system recognizes is exactly equivalent to the
behavior FSMs. But, in an intelligent system, the behav-
ior FSMs produce successful behavior. If we define WM
primitives over time as a string of words,w1,w2, ...,wn,
where the subscripts represent time and define success-
ful behavior states as S1, S2, ..., Sm, then we have the fol-
lowing equivalency w1,w2, ...,wn ⇐⇒ S1, S2, ..., Sm.

How is the claim of equivalency helpful in applying
the NIM to a system so represented? It places the sys-
tem representation (summarized in Section III) in the
domain of a formal theory. Any computational FSM can
be reduced to a decision FSM, which opens up our sys-
tem to formal analysis. For example, given any required
WM input set, we can generate the equivalent decision
FSM required to recognize it and visa versa. The WM
primitive data needed for system behavior is precisely
identified, providing guidance to the perception sub-
system. Each accept state of the system must connect
to demonstrably successful behavior. This is the side
information and pattern, I and D, required by the NIM.

VIII. Summary and conclusions

The development and application of the NIM consists
of the following items: the definition of and motivation
for an appropriate NIM [1], the adoption of a system
representation method that is amenable to measure-
ment by the NIM, and a real-world application problem
for experimental verification of the effectiveness of the
NIM and the effectiveness of representation method to
facilitate the application of the NIM. We have presented
the second phase of this research, namely, the adoption
of a system representation method and the start of the
examination of the nature and effectiveness of the NIM
for the on-road driving problem.

The key result of this phase of the research is that we
have conceptually demonstrated an exact equivalency
between the input the strings of input world model
primitives that the system "recognizes," the FSM-based
realization code for behavior generation, and demon-
strably safe and efficient performance of the system.
Though this may seem a trivial discovery, most intel-
ligent systems metric research has been focussing on
performance only, without exploiting this rich connec-
tion between WM data, BG code, and output behav-
ior. Furthermore, with the modularity and uncorrelat-
edness of behaviors in the representation method (RCS),
the formality, simplicity, and richness of FSM represen-
tation, and if we know the intelligence of subsystems,
it then becomes possible to measure the intelligence of
designs containing such subsystems, without directly
measuring performance, though we must be assured of
that the system can deliver successful performance.

FSMs, though providing opportunities for formal
analysis, are quite simplistic and essentially less pow-
erful than general purpose programming language, e.g.,
the Turing machine. However FSMs in this paradigm,
though pervasive, merely are intended to form the
framework for the intelligent system, and on-line plan-
ning, learning, and other general purpose operations
can all be integrated into the framework.

What is the intelligence measured by the NIM of a sys-

tem designed according to this system representation?
It is going to be proportional to the size of the accu-
mulated set of either the input words "recognized" by
the system, or, equivalently, the set of unique system
"behavior states" that the system contains, where those
states have been verified by external intelligent agents
(humans) to produce demonstrably successful perfor-
mance.

As we seek to build intelligent systems, a key to suc-
cess is to achieve the concerted, integrated efforts of re-
searchers and practitioners worldwide (lack of same has
been a great hindrance). We cannot achieve such a con-
certed effort without an agreed-to "task taxonomy" for
the tasks we wish to automate. For example, agreeing to
a common organizational structure for military organi-
zations greatly facilitated their efficiency and effective-
ness historically. Once we have this in place for com-
mon tasks (like on-road driving)...and this is essential,
though difficult...if we have a representation approach
that is 1) transparent and 2) separable (i.e., can add in-
telligent behavior modules without disturbing existing
behaviors), then we have the basis for a native intel-
ligence metric, one that is not solely dependent upon
system performance. We believe that the NIM will be
critical for expediting system design, because it allows
metrics to be fruitfully applied prior to connecting the
system to simulation or actual realization with hard-
ware in the real environment.

Because the NIM requires that the system have a mea-
surable connection with useful, detachable, and com-
plex functionality, we see that a NIM, rather than com-
peting with performance metrics, will actually depend
on them. We suspect that performance metrics will be
applied to subsystem functionality and a modular, sep-
arable design method like RCS will allow us to build
large scale autonomous systems that have globally mea-
surable intelligence, based on the measurable perfor-
mance of their subsystems.

Several research issues still need to be addressed.
Real-time considerations are essential to the successful
behavior of an electro-mechanical system, particularly
an on-road autonomous vehicle. We need to consider
how the FSM formality would handle temporal sensitiv-
ity.

It is also appropriate that the NIM is roughly like Shan-
non’s information measure, in that it is the negative log-
arithm of a probability. We would like to investigate the
richness of this similarity.

For the on-road autonomous driving application, as
yet, we are still in the process of 1) generating the FSMs
for the system and 2) verifying correct performance us-
ing simulation and animation.

There is some complication in the equivalency claim
advanced in Section VII-C, given that our representation

method is actually multiple, simultaneously executing
FSMs, and each node is an FSM executing in parallel (ef-
fectively) with all other nodes. However, the principle is
true for each individual node and the scaling up to mul-
tiple, simultaneously executing FSMs will have to wait
for analysis in a later phase of this research.

References

[1] John A. Horst, “A native intelligence metric,” Gaithersburg,
Maryland, USA, 2002, perMIS 2002.

[2] William A. Dembski, The Design Inference: Eliminating Chance
Through Small Probabilities, Cambridge University Press, 1998.

[3] J. S. Albus and A. M. Meystel, Engineering of Mind: An Introduc-
tion to the Science of Intelligent Systems, John Wiley and Sons,
2001.

[4] John Horst, “Architecture, Design Methodology, and
Component-Based Tools for a Real-Time Inspection System,”
Newport Beach, CA, 2000, 3rd International Symposium on
Object-Oriented, Real-Time, Distributed Computing (ISORC).

[5] Michael Sipser, Introduction to the Theory of Computation, PWS
Publishing, 1997.

[6] author correspondence with Dr. Meera Sitharam, University of
Florida.

